Generalized principal bundles and quotient stacks

Elena Caviglia

University of Leicester PSSL 107

01/04/2023

Classical principal bundles

Definition.

Let X be a topological space and let G be a topological group. A **principal** G-bundle over X is a topological space P equipped with an action $p \colon G \times P \to P$ and a G-equivariant continuous map $\pi_P \colon P \to X$, that is locally trivial, i.e. there exists an open covering $\{U_i\}_{i \in I}$ of X such that for every $i \in I$ the restriction $P|_{U_i}$ is isomorphic to $G \times U_i$ via a G-equivariant isomorphism.

Setting and preliminary definitions

Let C be a category with pullbacks and terminal object T and let τ be a Grothendieck topology on it.

Setting and preliminary definitions

Let $\mathcal C$ be a category with pullbacks and terminal object $\mathcal T$ and let τ be a Grothendieck topology on it.

Definition.

Let G be an internal group in C and let X be an object of C. An **action** of G on X is a morphism $x \colon G \times X \to X$ such that the following diagrams are commutative

where $m: G \times G \to G$ is the internal multiplication of G and $e: T \to G$ is the internal neutral element of G.

Setting and preliminary definitions

Definition.

Let G be a group object in C that acts on the objects X and Y of C with actions $x \colon G \times X \to X$ and $y \colon G \times Y \to Y$ respectively. A G-equivariant morphism $f \colon X \to Y$ is a morphism in C such that the following square is commutative:

$$G \times X \xrightarrow{x} X$$

$$id_{G} \times f \downarrow \qquad \qquad \downarrow f$$

$$G \times Y \xrightarrow{y} Y.$$

Actions on pullbacks

Let G be a group object of C that acts on $P, Y, Z \in C$ and let $f: Z \to Y$ and $g: P \to Y$ be G-equivariant morphisms.

We define an action of G on the pullback $P \times_Y Z$ using the morphism $\psi \colon G \times (P \times_Y Z) \to P \times_Y Z$ induced by the universal property of the pullback $P \times_Y Z$ as in the following diagram

Locally trivial morphisms

Definition (C.).

Let $g: Y \to X$ be a morphism of C. We say that g is **locally trivial** if there exists a covering $\{f_i \colon U_i \to X\}_{i \in I}$ of X such that for every $i \in I$ the pullback

$$\begin{array}{c|c}
Y \times_X U_i & \xrightarrow{g^* f_i} & Y \\
\downarrow^{f_i^* g} & \downarrow & \downarrow^{g} \\
U_i & \xrightarrow{f_i} & X
\end{array}$$

is isomorphic to $G \times U_i$ via a G-equivariant isomorphism.

Principal G-bundles

Definition (C.).

Let G be an internal group in the site (C, τ) and let X be an object of C. A **principal** G-bundle over X is an object $P \in C$ equipped with an action $p \colon G \times P \to P$ and a G-equivariant locally trivial morphism $\pi_P \colon P \to X$. Let $\pi_P \colon P \to X$ and $\pi_Q \colon Q \to X$ be principal G-bundles over X in C. A morphism of principal G-bundles over X from $\pi_P \colon P \to X$ to $\pi_Q \colon Q \to X$ is a G-equivariant morphism $G \colon P \to Q$ in $G \colon C$ such that

Proposition (C.).

Let $\pi_P \colon P \to Y$ be a principal G-bundle over Y and let $f \colon Z \to Y$ be a G-equivariant morphism in C. Then the morphism $f^*\pi_P \colon P \times_Y Z \to Z$ is a principal G-bundle over Z.

Proposition (C.).

Let $\pi_P \colon P \to Y$ be a principal G-bundle over Y and let $f \colon Z \to Y$ be a G-equivariant morphism in C. Then the morphism $f^*\pi_P \colon P \times_Y Z \to Z$ is a principal G-bundle over Z.

The morphism $f^*\pi_P$ is *G*-equivariant since the square

$$G \times (P \times_{Y} Z) \xrightarrow{\psi} P \times_{Y} Z$$

$$id_{G} \times f^{*}\pi_{P} \downarrow \qquad \qquad \downarrow f^{*}\pi_{P}$$

$$G \times P \xrightarrow{p} P,$$

is commutative by definition of ψ .

We consider the covering $\mathcal{V} = \{g_i \colon V_i \to Y\}_{i \in I}$ such that for every $i \in I$ the pullback $P \times_Y V_i$ is isomorphic to $G \times V_i$ via the G-equivariant isomorphism α_i and we use it to define the covering family

$$\mathcal{U} = \{ f^* g_i \colon V_i \times_Y Z \to Z \}_{i \in I}.$$

We consider the covering $\mathcal{V} = \{g_i \colon V_i \to Y\}_{i \in I}$ such that for every $i \in I$ the pullback $P \times_Y V_i$ is isomorphic to $G \times V_i$ via the G-equivariant isomorphism α_i and we use it to define the covering family

$$\mathcal{U} = \{ f^* g_i \colon V_i \times_Y Z \to Z \}_{i \in I}.$$

We show that $G \times (V_i \times_Y Z)$ satisfies the universal property of the pullback $(P \times_Y Z) \times_Z (V_i \times_Y Z)$.

$$G \times (V_i \times_Y Z) \xrightarrow{h_i} P \times_Y Z$$

$$\downarrow^{pr_2} \qquad \qquad \downarrow^{f^*\pi_P}$$

$$V_i \times_Y Z \xrightarrow{f^*g_i} Z$$

For every $i \in I$, we define the morphism h_i as follows

Generalized quotient prestacks

Definition (C.).

Let X be an object of $\mathcal C$ and let G be a group object of $\mathcal C$ that acts on X with action $x\colon G\times X\to X$.

The **quotient prestack** [X/G]: $C^{op} \to Cat$ is defined as follows:

- for every object $Y \in \mathcal{C}$ we define [X/G](Y) as the category that has
 - as objects the pairs (P, α) where $\pi_P \colon P \to Y$ is a principal G-bundle over Y and $\alpha \colon P \to X$ is a G-equivariant morphism;
 - as morphisms from (P, α) to (Q, β) the morphisms of principal G-bundles $\varphi \colon P \to Q$ such that

Definition (C.).

- for every morphism $f: Z \to Y$ in C, we define

$$[X/G](f)\colon [X/G](Y)\to [X/G](Z)$$

as the functor that sends

- an object $(P, \alpha) \in [X/G](Y)$ to the pair $(P \times_Y Z, \alpha \circ \pi_P^* f)$, where $P \times_Y Z$ is the pullback of f and π_P ;
- a morphism $\varphi \colon (P, \alpha) \to (Q, \beta)$ to the morphism $[X/G](f)(\varphi)$ defined as follows

Well-definedness of [X/G]

Proposition (C.).

The quotient prestack [X/G]: $C^{op} \to Cat$ is well-defined.

Given $f: Z \to Y$ the assignment

$$[X/G](f)\colon [X/G](Y)\to [X/G](Z)$$

- is well-defined on objects because principal G-bundles over Y are closed under pullbacks;
- preserves identities and compositions by the universal property of the pullback.

Pseudofunctoriality of X/G

Proposition (C.).

The quotient prestack $[X/G]: C^{op} \to Cat$ is a prestack.

$$\iota_Y \colon \operatorname{id}_{[X/G](Y)} \Rightarrow [X/G](\operatorname{id}_Y)$$

$$\iota_Y \colon \operatorname{id}_{[X/G](Y)} \Rightarrow [X/G](\operatorname{id}_Y) \qquad \varepsilon_{f,g} \colon [X/G](g) \circ [X/G](f) \Rightarrow [X/G](f \circ g)$$

Some observations

Remark.

The quotient prestack [X/G] doesn't necessarily take values in $\mathcal{G}pd$.

Some observations

Remark.

The quotient prestack [X/G] doesn't necessarily take values in $\mathcal{G}pd$.

Definition (C.).

Let C be a category with terminal object T and let G be a group object in C. We call **classifying prestack** the prestack [T/G] and we denote it $\mathcal{B}G$.

Descent data

Definition.

Let $\mathcal{F}\colon \mathcal{C}^{\mathsf{op}} \to \mathcal{C}at$ be a prestack and let S be a sieve on $Y \in \mathcal{C}$.

A **descent datum on** S **for** \mathcal{F} is an assignment for every morphism $Z \xrightarrow{f} Y$ in S of an object $W_f \in \mathcal{F}(Z)$ and, for every pair of composable morphisms $Z' \xrightarrow{g} Z \xrightarrow{f} Y$ with $f \in S$, of an isomorphism $\varphi^{f,g} \colon g^*W_f \xrightarrow{\simeq} W_{g\circ f}$ such that, given morphisms $Z'' \xrightarrow{h} Z' \xrightarrow{g} Z \xrightarrow{f} Y$ with $f \in S$, the following diagram is commutative

$$h^*(g^*W_f) \xrightarrow{h^*\varphi^{f,g}} h^*(W_{f\circ g})$$

$$\downarrow \downarrow \downarrow \downarrow \qquad \qquad \downarrow \varphi^{f\circ g,h}$$
 $(g\circ h)^*(W_f) \xrightarrow{\varphi^{f,g\circ h}} W_{f\circ g\circ h}.$

Descent data

Definition.

This descent datum is called **effective** if there exist an object $W \in \mathcal{F}(Y)$ and, for every morphism $Z \xrightarrow{f} Y \in S$, an isomorphism

$$\psi^f \colon f^*(W) \xrightarrow{\simeq} W_f$$

such that, given morphisms $Z' \xrightarrow{g} Z \xrightarrow{f} Y$ with $f \in S$, the following diagram is commutative

Definition of stack

Definition.

A prestack $\mathcal{F}\colon \mathcal{C}^{\mathsf{op}} \to \mathcal{C}at$ is a **stack** if it satisfies the following conditions:

- Every descent datum for $\mathcal F$ is effective;
- (Gluing of morphisms) Given a covering family $\mathcal{U} = \{f_i \colon U_i \to U\}_{i \in I}$, objects x and y of $\mathcal{F}(U)$ and morphisms $\varphi_i \colon x\big|_{U_i} \to y\big|_{U_i}$ in $\mathcal{F}(U_i)$ for every $i \in I$ such that for every $i, j \in I$ $\varphi_i\big|_{U_{ij}} = \varphi_j\big|_{U_{ij}}$, there exists a morphism $\eta \colon x \to y$ such that $\eta\big|_{U_i} = \varphi_i$;
- (*Uniqueness of gluings*) Given a covering family $\mathcal{U} = \{f_i \colon U_i \to U\}_{i \in I}, \text{ objects } x \text{ and } y \text{ of } \mathcal{F}(U) \text{ and morphisms}$ $\varphi, \psi \colon x \to y \text{ such that for every } i \in I \ \varphi\big|_{U_i} = \psi\big|_{U_i}, \text{ then } \varphi = \psi.$

Canonical topology on a site

Definition.

Let \mathcal{C} be a category. The **canonical topology** κ on the category \mathcal{C} is the finest Grothendieck topology on \mathcal{C} such that every representable presheaf of \mathcal{C} is a sheaf on the site (\mathcal{C}, κ) .

Canonical topology on a site

Definition.

Let $\mathcal C$ be a category. The **canonical topology** κ on the category $\mathcal C$ is the finest Grothendieck topology on $\mathcal C$ such that every representable presheaf of $\mathcal C$ is a sheaf on the site $(\mathcal C, \kappa)$.

Definition.

Let \mathcal{C} be a category and let X be an object of \mathcal{C} . A sieve S on X is a **colim sieve** if $X = \operatorname{colim}_S \operatorname{dom}$, where $\operatorname{dom}: S \to \mathcal{C}$ is the domain functor. Moreover, S is a **universal colim sieve** if for every morphism $f: Y \to X$ in \mathcal{C} the sieve f^*S on Y is a colim sieve.

Proposition (Johnstone, Lester).

The sieves for the canonical topology are exactly the universal colim sieves.

Basis for the canonical topology

Definition.

A morphism $f : C \to D$ in C is called an **effective epimorphism** if it is the coequalizer of its kernel pair. Moreover, it is called a **universal effective epimorphism** if its base change along any morphism is an effective epimorphism.

Theorem (Lester).

Let $\mathcal C$ be a cocomplete category with pullbacks and a terminal object and such that pullbacks preserve colimits. Then the family $\{f_i\colon Y_i\to X\}_{i\in I}$ is a covering family for X in κ if and only if the morphism

$$\coprod_{i\in I} f_i \colon \coprod_{i\in I} Y_i \to X$$

is a universal effective epimorphism.

The main theorem

Theorem (C.).

Let $\mathcal C$ be a cocomplete category with pullbacks and a terminal object and such that pullbacks preserve colimits. Let then τ be a subcanonical Grothendieck topology on $\mathcal C$.

Then the quotient prestack [X/G] is a stack.

The main theorem

Theorem (C.).

Let $\mathcal C$ be a cocomplete category with pullbacks and a terminal object and such that pullbacks preserve colimits. Let then τ be a subcanonical Grothendieck topology on $\mathcal C$.

Then the quotient prestack [X/G] is a stack.

We show that [X/G] is a stack when $\tau = \kappa$.

This implies that it is a stack every time τ is subcanonical, since the principal bundles with respect to a subcanonical topology are principal bundles in (C, k) as well.

Gluing of morphisms

Let $(P,\alpha), (Q,\beta) \in [X/G](Y)$ and for every $i \in I$ let $\varphi_i \colon (P,\alpha)\big|_{U_i} \to (Q,\alpha)\big|_{U_i}$ be a morphism of $\mathcal C$ such that for every $i,j \in I$ we have $\varphi_i\big|_{U_{ij}} = \varphi_j\big|_{U_{ij}}$.

To construct $\eta\colon (P,\alpha)\to (Q,\beta)$ such that $\eta\big|_{U_i}=\varphi_i$ for every $i\in I$ we use the universal property of the following coequalizer

$$\left(\coprod_{i \in I} P \times_{Y} U_{i} \right) \times_{P} \left(\coprod_{i \in I} P \times_{Y} U_{i} \right) \xrightarrow{\prod_{i \in I} P \times_{Y} U_{i}} \xrightarrow{\prod_{i \in I} \pi_{P}^{*} f_{i}} P$$

$$\downarrow \eta$$

$$\downarrow \eta$$

$$\downarrow \eta$$

$$Q.$$

Uniqueness of gluings

Let $(P, \alpha), (Q, \beta) \in [X/G](Y)$ and let $\varphi, \psi \colon (P, \alpha) \to (Q, \beta)$ be morphisms such that for every $i \in I \varphi|_{U_i} = \psi|_{U_i}$.

We have $\varphi \circ \pi_P^* f_i = \psi \circ \pi_P^* f_i$ and this implies $\varphi = \psi$ because the morphisms $\{\pi_P^* f_i\}_{i \in I}$ are jointly epimorphic.

Given a descent datum on the sieve sieve S on Y, we need to define an object $(W,\alpha)\in [X/G](Y)$ and, for every morphism $Z\stackrel{f}{\to}Y\in S$, an isomorphism $\psi^f\colon f^*((W,\alpha))\stackrel{\simeq}{\longrightarrow} (W_f,\alpha_f)$ such that, given morphisms $Z'\stackrel{g}{\to}Z\stackrel{f}{\to}Y$ with $f\in S$, we have $\varphi^{f,g}\circ g^*\psi^f=\psi^{f\circ g}\circ (\varepsilon_{f,g})_{(W,\alpha)}$.

Given a descent datum on the sieve S on Y, we need to define an object $(W,\alpha) \in [X/G](Y)$ and, for every morphism $Z \xrightarrow{f} Y \in S$, an isomorphism $\psi^f : f^*((W,\alpha)) \xrightarrow{\simeq} (W_f,\alpha_f)$ such that, given morphisms $Z' \xrightarrow{g} Z \xrightarrow{f} Y$ with $f \in S$, we have $\varphi^{f,g} \circ g^* \psi^f = \psi^{f \circ g} \circ (\varepsilon_{f,g})_{(W,\alpha)}$.

We construct a functor $\Lambda \colon S \to [X/G](Y)$ that sends:

- an object $Z \xrightarrow{f} Y \in S$ to $(W_f \xrightarrow{f \circ \pi_{W_f}} Y, \alpha_f) \in [X/G](Y)$;
- a morphism k from $Z \xrightarrow{f} Y$ to $P \xrightarrow{t} Y$ to the composite morphism

$$W_f \xrightarrow{(\varphi^{k,t})^{-1}} k^* W_t \xrightarrow{\pi_{W_t}^* k} W_t.$$

Given a descent datum on the sieve sieve S on Y, we need to define an object $(W,\alpha)\in [X/G](Y)$ and, for every morphism $Z\stackrel{f}{\to}Y\in S$, an isomorphism $\psi^f\colon f^*((W,\alpha))\stackrel{\simeq}{\longrightarrow} (W_f,\alpha_f)$ such that, given morphisms $Z'\stackrel{g}{\to}Z\stackrel{f}{\to}Y$ with $f\in S$, we have $\varphi^{f,g}\circ g^*\psi^f=\psi^{f\circ g}\circ (\varepsilon_{f,g})_{(W,\alpha)}$.

We construct a functor $\Lambda: S \to [X/G](Y)$ that sends:

- an object $Z \xrightarrow{f} Y \in S$ to $(W_f \xrightarrow{f \circ \pi_{W_f}} Y, \alpha_f) \in [X/G](Y)$;
- a morphism k from $Z \xrightarrow{f} Y$ to $P \xrightarrow{t} Y$ to the composite morphism

$$W_f \xrightarrow{(\varphi^{k,t})^{-1}} k^* W_t \xrightarrow{\pi_{W_t}^* k} W_t.$$

We define $W := \operatorname{colim} \Lambda$ and we induce the morphism $\alpha \colon W \to X$ using the cocone given by the morphisms $\alpha_f \colon Z \to Y$ for every $f \in S$.

We induce the isomorphism $\psi^f \colon f^*W \xrightarrow{\simeq} W_f$ using the universal property of the colimit $\operatorname{colim}(f^* \circ \Lambda) = f^*W$, with cocone given by

$$f^*W_t \xrightarrow{\theta_t} (f^*t)^*(W_f) \xrightarrow{\pi_{W_f}^*(f^*t)} W_f,$$

where θ_t is the composite

$$f^*W_t \xrightarrow{\simeq} (t^*f)^*(W_t) \xrightarrow{\varphi^{t,t^*f}} W_{t\circ t^*f} \xrightarrow{(\varphi^{f,f^*t})^{-1}} (f^*t)^*(W_f).$$

To prove that this is a cocone, we show that there exists a natural transformation $\Theta\colon \Lambda\circ f^*\Rightarrow (\pi_{W_f})^*\circ f^*\circ \text{dom of components }\theta_t$ for every $t\in S$.